Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 5-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In what follows $C$ is the space of $2\pi$-periodic continuous functions; $P$ is a seminorm defined on $C$, shift-invariant, and majorized by the uniform norm; $\omega_m(f, h)_P$ is the $m$th modulus of continuity of a function $f$ with step $h$ and calculated with respect to $P$; $\mathscr K_r=\frac4\pi\sum\limits^{\infty}_{l=0}\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$, $B_r(x)=-\frac{r!}{2^{r-1}\pi^r}\sum\limits^{\infty}_{k-1}\frac{\cos(2k\pi x-r\pi/2)}{k^r}$ $(r\in\mathbb N)$, $B_0(x)=1$, $\gamma_r=\frac{B_r(\frac12)}{r!}$; $(k)=k_1+\cdots+k_m$, \begin{gather*} K_{r,m}=\{k\in\mathbb Z^m_+:0\le k_{\nu}\le r+\nu-2-k_1-\dots-k_{\nu-1}\}, \\ A_{r,0}=\frac2{r!}\int^{1/2}_0\left|B_r(t)-B_r\left(\frac12\right)\right|\,dt, \\ A_{r, m}=\sum_{k\in K_{r,m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)A_{r+m-(k), 0}, \quad \Sigma_{r, m}=\sum^{m-1}_{\nu=0}2^{\nu}A_{r,\nu}, \\ M_{r, m}(f, h)_P=\begin{cases} \Sigma^{-1}_{r,m}\sum\limits^{m-1}_{\nu=0}A_{r,\nu}\omega_{\nu}(f,h)_P,&\text{</nomathmode><mathmode>$r$ is even}, \Sigma^{-1}_{r, m}(\dfrac{A_{r, 0}}2\omega_1(f, h)_P+\sum\limits^{m-1}_{\nu=1}A_{r,\nu}\omega_{\nu}(f,h)_P),&\text{$r$ is odd}. \end{cases} \end{gather*}</mathmode><nomathmode> Theorem 1. \textit{Let $r,m\in\mathbb N$, $n,\lambda>0$, $f\in C^{(r+m)}$. Then} $$ \begin{gathered} P(f^{(m)})\le\lambda^r\left\{\Sigma_{r, m}+2^m\sum_{k\in K_{r, m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)\frac{\mathscr K_{r+m-(k)}}{\lambda^{r+m-(k)}}\right\} \\ \times\max\left\{\left(\frac{\omega_m(f,\tfrac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right)^{\frac r{r+m}}M^{\frac m{r+m}}_{r, m},\left(f^{(r+m)},\frac{\lambda}n\right), \frac{n^m\omega_m(f,\frac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right\}. \end{gathered} $$ For some values of $\lambda$ and seminorms related to best approximations by trigonometric polynomials and splines in the uniform and integral metrics, the inequalities are sharp.
@article{ZNSL_2002_290_a0,
     author = {O. L. Vinogradov and V. V. Zhuk},
     title = {Sharp {Kolmogorov-type} inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--26},
     year = {2002},
     volume = {290},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a0/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - V. V. Zhuk
TI  - Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 5
EP  - 26
VL  - 290
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a0/
LA  - ru
ID  - ZNSL_2002_290_a0
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A V. V. Zhuk
%T Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 5-26
%V 290
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a0/
%G ru
%F ZNSL_2002_290_a0
O. L. Vinogradov; V. V. Zhuk. Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 5-26. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a0/