On same-invariant linear groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 134-148
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear group $G\le GL(V)$ is called same-invariant if the subspaces of linear invariants $V^g$ are the same for all $g\in G, g\ne1$. Below we consider properities of such a group $G$ under the assumption that $G$ contains unipotent elements.
@article{ZNSL_2002_289_a7,
author = {N. L. Gordeev and N. F. Kushpel'},
title = {On same-invariant linear groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--148},
publisher = {mathdoc},
volume = {289},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a7/}
}
N. L. Gordeev; N. F. Kushpel'. On same-invariant linear groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 134-148. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a7/