Cohomology of algebras of dihedral type, III:~the family $D(2\mathcal A)$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 113-133
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For algebras of dihedral type that form the family $D(2\mathcal A)$ (from K. Erdmann's list), the Yoneda algebras are described in terms of quivers with relations.
			
            
            
            
          
        
      @article{ZNSL_2002_289_a6,
     author = {A. I. Generalov and E. A. Osiyuk},
     title = {Cohomology of algebras of dihedral type, {III:~the} family $D(2\mathcal A)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--133},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a6/}
}
                      
                      
                    TY - JOUR AU - A. I. Generalov AU - E. A. Osiyuk TI - Cohomology of algebras of dihedral type, III:~the family $D(2\mathcal A)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 113 EP - 133 VL - 289 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a6/ LA - ru ID - ZNSL_2002_289_a6 ER -
A. I. Generalov; E. A. Osiyuk. Cohomology of algebras of dihedral type, III:~the family $D(2\mathcal A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 113-133. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a6/