Subgroups of the spinor group containing a split maximal torus.~III
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 287-299

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe subgroups of the spinor group $\operatorname{Spin}\,(2l+1, K)$ over a field $K$ such that $2\in K^*, |K|\ge9$ and $l\ge3$, which contain a split maximal torus. We prove that the description of these subgroups is standard in two cases: 1) $l$ is even; 2) $l$ is odd and $-1\in K^{*2}$. We show that as in the papers by N. A. Vavilov and V. Holubovsky, devoted to subgroups of the orthogonal group, one can reduce the odd case to the case of even $n=2l$. However, here the calculations are somewhat more involved since we can only use diagonal elements of $\operatorname{Spin}\,(2l+1,K)$. Furthermore, we strengthen the results of N. A. Vavilov pertaining to the even case by relaxing the condition on the field $K$ to $|K|\ge9$.
@article{ZNSL_2002_289_a16,
     author = {E. A. Filippova},
     title = {Subgroups of the spinor group containing a split maximal {torus.~III}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {287--299},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a16/}
}
TY  - JOUR
AU  - E. A. Filippova
TI  - Subgroups of the spinor group containing a split maximal torus.~III
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 287
EP  - 299
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a16/
LA  - ru
ID  - ZNSL_2002_289_a16
ER  - 
%0 Journal Article
%A E. A. Filippova
%T Subgroups of the spinor group containing a split maximal torus.~III
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 287-299
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a16/
%G ru
%F ZNSL_2002_289_a16
E. A. Filippova. Subgroups of the spinor group containing a split maximal torus.~III. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 287-299. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a16/