Splitting of quadratic forms under some generic field extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 267-276
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a field, $\operatorname{char}\!F\ne2$, $\varphi$ and $\psi$ be anisotropic quadratic forms over $F$. Let $L$ be the generic field extension of $F$ such that $i(\psi_L)\ge2$. Under which conditions is the form $\varphi_L$ isotropic? We give the answer to this question in the cases where $\dim\varphi=5$, $\dim\psi=6$ and $\dim\varphi=6$, $\dim\psi=7$.
@article{ZNSL_2002_289_a14,
author = {A. S. Sivatski},
title = {Splitting of quadratic forms under some generic field extensions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {267--276},
publisher = {mathdoc},
volume = {289},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/}
}
A. S. Sivatski. Splitting of quadratic forms under some generic field extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 267-276. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/