Splitting of quadratic forms under some generic field extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 267-276

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a field, $\operatorname{char}\!F\ne2$, $\varphi$ and $\psi$ be anisotropic quadratic forms over $F$. Let $L$ be the generic field extension of $F$ such that $i(\psi_L)\ge2$. Under which conditions is the form $\varphi_L$ isotropic? We give the answer to this question in the cases where $\dim\varphi=5$, $\dim\psi=6$ and $\dim\varphi=6$, $\dim\psi=7$.
@article{ZNSL_2002_289_a14,
     author = {A. S. Sivatski},
     title = {Splitting of quadratic forms under some generic field extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/}
}
TY  - JOUR
AU  - A. S. Sivatski
TI  - Splitting of quadratic forms under some generic field extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 267
EP  - 276
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/
LA  - en
ID  - ZNSL_2002_289_a14
ER  - 
%0 Journal Article
%A A. S. Sivatski
%T Splitting of quadratic forms under some generic field extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 267-276
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/
%G en
%F ZNSL_2002_289_a14
A. S. Sivatski. Splitting of quadratic forms under some generic field extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 267-276. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a14/