On the Weyl groups as Hurwitz groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 260-266

Voir la notice de l'article provenant de la source Math-Net.Ru

A new series of Hurwitz groups is obtained: it is proved that the commutator subgroup of the Weyl group of type $D_n$ is Hurwitz for any sufficiently large $n$.
@article{ZNSL_2002_289_a13,
     author = {N. S. Semenov},
     title = {On the {Weyl} groups as {Hurwitz} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {260--266},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a13/}
}
TY  - JOUR
AU  - N. S. Semenov
TI  - On the Weyl groups as Hurwitz groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 260
EP  - 266
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a13/
LA  - ru
ID  - ZNSL_2002_289_a13
ER  - 
%0 Journal Article
%A N. S. Semenov
%T On the Weyl groups as Hurwitz groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 260-266
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a13/
%G ru
%F ZNSL_2002_289_a13
N. S. Semenov. On the Weyl groups as Hurwitz groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 260-266. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a13/