Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 233-259
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we consider the generalized Hilbert symbol in the cyclotomic extension of an absolutely unramified higher local field of characteristic 0 with perfect last residue field of characteristic $p>2$. We deduce the generalized Artin–Hasse and Iwasawa formulas from the explicit Kummer type Vostokov formula.
@article{ZNSL_2002_289_a12,
author = {A. N. Zinoviev},
title = {Generalized {Artin--Hasse} and {Iwasawa} formulas for the {Hilbert} symbol in a higher local field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--259},
publisher = {mathdoc},
volume = {289},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/}
}
TY - JOUR AU - A. N. Zinoviev TI - Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 233 EP - 259 VL - 289 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/ LA - ru ID - ZNSL_2002_289_a12 ER -
A. N. Zinoviev. Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 233-259. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/