Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 233-259

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider the generalized Hilbert symbol in the cyclotomic extension of an absolutely unramified higher local field of characteristic 0 with perfect last residue field of characteristic $p>2$. We deduce the generalized Artin–Hasse and Iwasawa formulas from the explicit Kummer type Vostokov formula.
@article{ZNSL_2002_289_a12,
     author = {A. N. Zinoviev},
     title = {Generalized {Artin--Hasse} and {Iwasawa} formulas for the {Hilbert} symbol in a higher local field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--259},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/}
}
TY  - JOUR
AU  - A. N. Zinoviev
TI  - Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 233
EP  - 259
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/
LA  - ru
ID  - ZNSL_2002_289_a12
ER  - 
%0 Journal Article
%A A. N. Zinoviev
%T Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 233-259
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/
%G ru
%F ZNSL_2002_289_a12
A. N. Zinoviev. Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 233-259. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a12/