Subgroups of the spinor group containing a split maximal torus.~II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 37-56

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first paper of the series, we proved standardness of a subgroup $H$ containing a split maximal torus in the split spinor group $\operatorname{Spin}(n,K)$ over a field $K$ of characteristic not 2 containing at least 7 elements under one of the following additional assumptions: 1) $H$ is reducible, 2) $H$ is imprimitive, 3) $H$ contains a non-trivial root element. In the present paper we finish the proof of a result announced by the author in 1990 and prove standardness of all intermediate subgroups provided $n=2l$ and $|K|\ge9$. For an algebraically closed $K$ this follows from a classical result of Borel and Tits and for a finite $K$ this was proven by Seitz. Similar results for subgroups of orthogonal groups $SO(n,R)$ were previously obtained by the author, not only for fields, but for any commutative semi-local ring $R$ with large enough residue fields.
@article{ZNSL_2002_289_a1,
     author = {N. A. Vavilov},
     title = {Subgroups of the spinor group containing a split maximal {torus.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--56},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Subgroups of the spinor group containing a split maximal torus.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 37
EP  - 56
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a1/
LA  - ru
ID  - ZNSL_2002_289_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Subgroups of the spinor group containing a split maximal torus.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 37-56
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a1/
%G ru
%F ZNSL_2002_289_a1
N. A. Vavilov. Subgroups of the spinor group containing a split maximal torus.~II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 37-56. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a1/