Cohomology of algebras of semidihedral type. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 9-36
Cet article a éte moissonné depuis la source Math-Net.Ru
The minimal projective resolutions of simple modules over algebras belonging to two families of algebras of semidihedral type, – namely, to the families $SD(2\mathscr B)_3$ and $SD(2\mathscr B)_1$, – are constructed. Using these resolutions the description of Yoneda algebras of algebras under consideration are obtained in terms of quivers with relations.
@article{ZNSL_2002_289_a0,
author = {M. A. Antipov and A. I. Generalov},
title = {Cohomology of algebras of semidihedral {type.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--36},
year = {2002},
volume = {289},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a0/}
}
M. A. Antipov; A. I. Generalov. Cohomology of algebras of semidihedral type. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 9-36. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a0/