On Backward uniqueness for parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove backward uniqueness result for the heat operator with variable lower order terms which implies full regularity of $L_{3,\infty}$-solutions of the tree-dimensional Navier–Stokes equations.
@article{ZNSL_2002_288_a4,
     author = {L. Escauriaza and G. A. Seregin and V. \v{S}verak},
     title = {On {Backward} uniqueness for parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--103},
     publisher = {mathdoc},
     volume = {288},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/}
}
TY  - JOUR
AU  - L. Escauriaza
AU  - G. A. Seregin
AU  - V. Šverak
TI  - On Backward uniqueness for parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 100
EP  - 103
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/
LA  - en
ID  - ZNSL_2002_288_a4
ER  - 
%0 Journal Article
%A L. Escauriaza
%A G. A. Seregin
%A V. Šverak
%T On Backward uniqueness for parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 100-103
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/
%G en
%F ZNSL_2002_288_a4
L. Escauriaza; G. A. Seregin; V. Šverak. On Backward uniqueness for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/