On Backward uniqueness for parabolic equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove backward uniqueness result for the heat operator with variable lower order terms which implies full regularity of $L_{3,\infty}$-solutions of the tree-dimensional Navier–Stokes equations.
			
            
            
            
          
        
      @article{ZNSL_2002_288_a4,
     author = {L. Escauriaza and G. A. Seregin and V. \v{S}verak},
     title = {On {Backward} uniqueness for parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--103},
     publisher = {mathdoc},
     volume = {288},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/}
}
                      
                      
                    L. Escauriaza; G. A. Seregin; V. Šverak. On Backward uniqueness for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/