On Backward uniqueness for parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove backward uniqueness result for the heat operator with variable lower order terms which implies full regularity of $L_{3,\infty}$-solutions of the tree-dimensional Navier–Stokes equations.
@article{ZNSL_2002_288_a4,
author = {L. Escauriaza and G. A. Seregin and V. \v{S}verak},
title = {On {Backward} uniqueness for parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--103},
year = {2002},
volume = {288},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/}
}
L. Escauriaza; G. A. Seregin; V. Šverak. On Backward uniqueness for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 100-103. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a4/