Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 79-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider strictly convex energy dencities $f\colon\mathbb R^n\to\mathbb R$ under nonstandart growth conditions. More precisely, we assume that for some constants $\lambda$, $\Lambda$ and for all $Z,Y\in\mathbb R^n$ the inequality $$ \lambda(1+|Z|^2)^{\frac{-\mu}2}|Y|^2\le D^2f(Z)(Y,Y)\le\Lambda(1+|Z|^2)^{\frac{q-2}2}|Y|^2 $$ holds with exponents $\mu\in\mathbb R$ and $q>1$. If $u$ denotes a bounded local minimizer of the energy $\int f(\nabla\omega)dx$ subject to a constraint of the form $\omega\ge\psi$ a.e. with a given obstacle $\psi\in C^{1,\alpha}(\Omega)$, then we prove local $C^{1,\alpha}$-regularity of $u$ provided that $q4-\mu$. This result substantially improves what is known up to now (see, for instance, [8, 7, 13]), even for the case of unconstrained local minimizers.
@article{ZNSL_2002_288_a3,
     author = {M. Bildhauer and M. Fuchs},
     title = {Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--99},
     publisher = {mathdoc},
     volume = {288},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 79
EP  - 99
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/
LA  - en
ID  - ZNSL_2002_288_a3
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 79-99
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/
%G en
%F ZNSL_2002_288_a3
M. Bildhauer; M. Fuchs. Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 79-99. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/