Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 79-99
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider strictly convex energy dencities $f\colon\mathbb R^n\to\mathbb R$ under nonstandart growth conditions. More precisely, we assume that for some constants $\lambda$, $\Lambda$ and for all $Z,Y\in\mathbb R^n$ the inequality
$$
\lambda(1+|Z|^2)^{\frac{-\mu}2}|Y|^2\le D^2f(Z)(Y,Y)\le\Lambda(1+|Z|^2)^{\frac{q-2}2}|Y|^2
$$
holds with exponents $\mu\in\mathbb R$ and $q>1$. If $u$ denotes a bounded local minimizer of the energy $\int f(\nabla\omega)dx$ subject to a constraint of the form $\omega\ge\psi$ a.e. with a given obstacle $\psi\in C^{1,\alpha}(\Omega)$, then we prove local $C^{1,\alpha}$-regularity of $u$ provided that $q4-\mu$. This result substantially improves what is known up to now (see, for instance, [8, 7, 13]), even for the case of unconstrained local minimizers.
@article{ZNSL_2002_288_a3,
author = {M. Bildhauer and M. Fuchs},
title = {Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--99},
publisher = {mathdoc},
volume = {288},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/}
}
TY - JOUR AU - M. Bildhauer AU - M. Fuchs TI - Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 79 EP - 99 VL - 288 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/ LA - en ID - ZNSL_2002_288_a3 ER -
%0 Journal Article %A M. Bildhauer %A M. Fuchs %T Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions %J Zapiski Nauchnykh Seminarov POMI %D 2002 %P 79-99 %V 288 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/ %G en %F ZNSL_2002_288_a3
M. Bildhauer; M. Fuchs. Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 79-99. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a3/