On global solvability of the Caushy–Dirichlet problem for a class of nondiagonal systems with $q$-pnonlinearity, $1$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 34-78
Cet article a éte moissonné depuis la source Math-Net.Ru
The Caushy–Dirichlet problem for a class of nondiagonal $q$-nonlinear parabolic systems is studied, $1
. In the case of two spatial variables, we constract a solution which is global in time and smooth almost everywhere. Hausdorff's dimension of the singular set is estimated.
@article{ZNSL_2002_288_a2,
author = {A. A. Arkhipova},
title = {On global solvability of the {Caushy{\textendash}Dirichlet} problem for a class of nondiagonal systems with $q$-pnonlinearity, $1<q<2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--78},
year = {2002},
volume = {288},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a2/}
}
TY - JOUR AU - A. A. Arkhipova TI - On global solvability of the Caushy–Dirichlet problem for a class of nondiagonal systems with $q$-pnonlinearity, $1 JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 34 EP - 78 VL - 288 UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a2/ LA - ru ID - ZNSL_2002_288_a2 ER -
A. A. Arkhipova. On global solvability of the Caushy–Dirichlet problem for a class of nondiagonal systems with $q$-pnonlinearity, $1