Absolute continuity of the spectrum of the periodic Maxwell operator in a layer
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 232-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Maxwell operator in a layer $\mathbb R^2\times(0,T)$. It is assumed that an electric permittivity $\varepsilon(\mathbf x)$ and a magnetic permeability $\mu(\mathbf x)$ are periodic along the layer. On the boundary of the layer, we impose conditions of ideal conductivity. Under wide assumptions on $\varepsilon(\mathbf x)$ and $\mu(\mathbf x)$, it is shown that the spectrum of the Maxwell operator is absolutely continuous.
@article{ZNSL_2002_288_a10,
     author = {T. A. Suslina},
     title = {Absolute continuity of the spectrum of the periodic {Maxwell} operator in a layer},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--255},
     publisher = {mathdoc},
     volume = {288},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Absolute continuity of the spectrum of the periodic Maxwell operator in a layer
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 232
EP  - 255
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/
LA  - ru
ID  - ZNSL_2002_288_a10
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Absolute continuity of the spectrum of the periodic Maxwell operator in a layer
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 232-255
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/
%G ru
%F ZNSL_2002_288_a10
T. A. Suslina. Absolute continuity of the spectrum of the periodic Maxwell operator in a layer. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 232-255. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/