Absolute continuity of the spectrum of the periodic Maxwell operator in a layer
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 232-255
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Maxwell operator in a layer $\mathbb R^2\times(0,T)$. It is assumed that an electric permittivity $\varepsilon(\mathbf x)$ and a magnetic permeability $\mu(\mathbf x)$ are periodic along the layer. On the boundary of the layer, we impose conditions of ideal conductivity. Under wide assumptions on $\varepsilon(\mathbf x)$ and $\mu(\mathbf x)$, it is shown that the spectrum of the Maxwell operator is absolutely continuous.
@article{ZNSL_2002_288_a10,
author = {T. A. Suslina},
title = {Absolute continuity of the spectrum of the periodic {Maxwell} operator in a layer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {232--255},
publisher = {mathdoc},
volume = {288},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/}
}
T. A. Suslina. Absolute continuity of the spectrum of the periodic Maxwell operator in a layer. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Tome 288 (2002), pp. 232-255. http://geodesic.mathdoc.fr/item/ZNSL_2002_288_a10/