Problems on extremal decomposition of the Riemann sphere.~II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 126-147

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we solve some problems on the maximum of the weighted sum $$ \sum^n_{k=1}\alpha^2_kM(D_k, a_k) $$ ($M(D_k, a_k)$ denote the reduced module of the domian $D_k$ with respect to the point $a_k\in D_k$) in the family of all nonoverlapping simple connected domians $D_k$, $a_k\in D_k$, $k=1,\dots,n$, where the points $a_1,\dots,a_n$, are free parameters satisfying certain geometric conditions. The proofs involve a version of the method of extremal metric, which reveals a certain symmetry of the extremal system of the points $a_1,\dots,a_n$. The problem on the maximum of the conformal invariant \begin{equation} 2\pi\sum^5_{k=1}M(D_k,b_k)-\frac12\sum_{1\le b_k5}\log|b_k-b_l| \tag{*} \end{equation} for all systems of points $b_1,\dots,b_s$ is also considered. In the case where the systems $\{b_1,\dots,b_5\}$ are symmetric with respect to a certain circle, the problem was solved earlier. A theorem formulated in the author's previous work asserts that the maximum of invariant (*) for all system of points $\{b_1,\dots,b_5\}$ is attained in a certain well-defined case. In the present work, it is shown that the proof of this theorem contains mistake. A possible proof of the theorem is outlined.
@article{ZNSL_2002_286_a9,
     author = {G. V. Kuz'mina},
     title = {Problems on extremal decomposition of the {Riemann} {sphere.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--147},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a9/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - Problems on extremal decomposition of the Riemann sphere.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 126
EP  - 147
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a9/
LA  - ru
ID  - ZNSL_2002_286_a9
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T Problems on extremal decomposition of the Riemann sphere.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 126-147
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a9/
%G ru
%F ZNSL_2002_286_a9
G. V. Kuz'mina. Problems on extremal decomposition of the Riemann sphere.~II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 126-147. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a9/