Extremal decompositions of a Riemann surface and quasiconformal mappings of a special form. II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 115-125
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathfrak R$ be a finite Riemann surface. For a quadratic differential on $\mathfrak R$ associated with a certain problem on extremal decomposition of $\mathfrak R$ into $n$ domians, a parametric family of quasiconformal mappings $f_{\mathbf K}\colon\mathfrak R\to\mathfrak R_{\mathbf K}$, $\mathbf K=(k_1,\dots,k_s)$, $k_i\to\mathbb C$, is defined. These mappings map the domians of the extremal decomposition of $\mathfrak R$ onto the domians of the extremal decomposition of $\mathfrak R_{\mathbf K}$. This allows one to study the functional dependence of the problem on the parameters.
@article{ZNSL_2002_286_a8,
author = {E. G. Emel'yanov},
title = {Extremal decompositions of a {Riemann} surface and quasiconformal mappings of a special {form.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {115--125},
year = {2002},
volume = {286},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a8/}
}
E. G. Emel'yanov. Extremal decompositions of a Riemann surface and quasiconformal mappings of a special form. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 115-125. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a8/