On the problem on maximizing the product of powers of conformal radii of nonverlapping domians
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 103-114

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp estimate of the product $$ \prod^4_{k=1}R^{\alpha^2_k}(D_k,b_k) $$ (as usual,$R(D,b)$ denotes the conformal radius of a domian $D$ with respect to a point $b\in D$) in the family of all quadruples of nonoverlapping simply connected domians $\{D_k\}$, $b_k\in D_k$, $k=1,\dots,4$, is obtained. Here, $\{b_1,\dots,b_4\}$ are four arbitrary distinct points on $\overline{\mathbb C}$, $\alpha_1=\alpha_2=1$, $\alpha_3=\alpha_4=\alpha$, and $\alpha$ is an arbitrary positive number. The proof involves the solution of the problem on maximizing a certain conformal invariant, which is related to the problem under consideration.
@article{ZNSL_2002_286_a7,
     author = {E. G. Emel'yanov},
     title = {On the problem on maximizing the product of powers of conformal radii of nonverlapping domians},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a7/}
}
TY  - JOUR
AU  - E. G. Emel'yanov
TI  - On the problem on maximizing the product of powers of conformal radii of nonverlapping domians
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 103
EP  - 114
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a7/
LA  - ru
ID  - ZNSL_2002_286_a7
ER  - 
%0 Journal Article
%A E. G. Emel'yanov
%T On the problem on maximizing the product of powers of conformal radii of nonverlapping domians
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 103-114
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a7/
%G ru
%F ZNSL_2002_286_a7
E. G. Emel'yanov. On the problem on maximizing the product of powers of conformal radii of nonverlapping domians. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 103-114. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a7/