Application of conformal mappings to the inequalities for polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 85-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Applications of the geometric theory of functions to inequalities for algebraic polynomials are considered. The main attention is paid to constructing a univalent conformal mapping for a given polynomial and to applying the Lebedev and Nehari theorems to this mapping. A new sharp inequality of Bernshtein type for polynomials with restrictions on the growth on a segment or on a circle, inequalities with restrictions on the zeros of the polynomial, and other inequalities are obtained. In particular, classical inequalities by Markov, Bernshtein, and Schur are strengthened.
@article{ZNSL_2002_286_a6,
     author = {V. N. Dubinin and A. V. Olesov},
     title = {Application of conformal mappings to the inequalities for polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--102},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a6/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - A. V. Olesov
TI  - Application of conformal mappings to the inequalities for polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 85
EP  - 102
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a6/
LA  - ru
ID  - ZNSL_2002_286_a6
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A A. V. Olesov
%T Application of conformal mappings to the inequalities for polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 85-102
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a6/
%G ru
%F ZNSL_2002_286_a6
V. N. Dubinin; A. V. Olesov. Application of conformal mappings to the inequalities for polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 85-102. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a6/