Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 48-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be the class of functions $f(z)=z+a_2z^2+\dots$ that are regular in the unit disk and satisfy the condition $\operatorname{Im}f(z)\operatorname{Im}z>0$ for $\operatorname{Im}\ne0$, and let $z_1$ and $z_2$ be any distinct fixed points in the disk $|z|1$. For the systems of functionals mentioned in the title, the regions of values on $T$ are studied. As a corollary, the regions of values of $f'(z_2)$ and $f''(z_1)$ on the subclasses of functions in $T$ with fixed values $f(z_1),f(z_2)$ and $f(z_1),f'(z_1)$, respectively, are found.
@article{ZNSL_2002_286_a3,
     author = {E. G. Goluzina},
     title = {Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 48
EP  - 61
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a3/
LA  - ru
ID  - ZNSL_2002_286_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 48-61
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a3/
%G ru
%F ZNSL_2002_286_a3
E. G. Goluzina. Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 48-61. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a3/