The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 200-214

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_k(\Gamma_0(N))$ be the space of cusp forms of even weight $k$ for $\Gamma_0(N)$, let $\mathscr F_0$ be the set of all newforms in $S_k(\Gamma_0(N))$, and let $\mathscr H_2(s,f)$ be the symmetric square of the Hecke $L$-function of a form $f\in\mathscr F_0$. It is proved that for $N=p$ we have $$ \sum_{f\in\mathscr F_0,\mathscr H_2(1/2,f)\ne0}1\gg N^{1-\varepsilon}, $$ where the $\ll$-constant depends only on $\varepsilon$ and $k$. Let $f(z)\in S_k(\Gamma(N))$: $$ f(z)=\sum^{\infty}_{n=1}a_f(n)e^{2\pi inz}, \qquad a_f(n)n^{-(k-1)/2}=b_f(n). $$ The distribution of values of the sums $$ \sum_{n\le X}b_f(n) \quad\text{and}\quad \sum_{n\le X}b_f(n)^2 $$ for increasing $X$ and $N$ is studied.
@article{ZNSL_2002_286_a14,
     author = {O. M. Fomenko},
     title = {The symmetric squares of {Hecke} $L$-funktions and {Fourier} coefficients of cusp forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--214},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 200
EP  - 214
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a14/
LA  - ru
ID  - ZNSL_2002_286_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 200-214
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a14/
%G ru
%F ZNSL_2002_286_a14
O. M. Fomenko. The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 200-214. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a14/