On Epstein's zeta-function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 169-178

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q(x_1,x_2,x_3)=x^2_1+x^2_2+x^2_3$, and let $\zeta(s;Q)$ be Epstein's zeta-function of the form $Q$. It is proved that for $|t|>C>0$ one has the estimate $$ \zeta(1+it;Q)\ll|t|^{1/4+\varepsilon}. $$
@article{ZNSL_2002_286_a12,
     author = {O. M. Fomenko},
     title = {On {Epstein's} zeta-function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On Epstein's zeta-function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 169
EP  - 178
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/
LA  - ru
ID  - ZNSL_2002_286_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On Epstein's zeta-function
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 169-178
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/
%G ru
%F ZNSL_2002_286_a12
O. M. Fomenko. On Epstein's zeta-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 169-178. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/