On Epstein's zeta-function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 169-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Q(x_1,x_2,x_3)=x^2_1+x^2_2+x^2_3$, and let $\zeta(s;Q)$ be Epstein's zeta-function of the form $Q$. It is proved that for $|t|>C>0$ one has the estimate
$$
\zeta(1+it;Q)\ll|t|^{1/4+\varepsilon}.
$$
@article{ZNSL_2002_286_a12,
author = {O. M. Fomenko},
title = {On {Epstein's} zeta-function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {169--178},
publisher = {mathdoc},
volume = {286},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/}
}
O. M. Fomenko. On Epstein's zeta-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 169-178. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a12/