The cubic simplectic theta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 148-158
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the cubic symplectic theta function is invariant with respect to the group $\operatorname{Sp}(4,\mathbb Z)$.
@article{ZNSL_2002_286_a10,
author = {N. V. Proskurin},
title = {The cubic simplectic theta function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--158},
publisher = {mathdoc},
volume = {286},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a10/}
}
N. V. Proskurin. The cubic simplectic theta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 148-158. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a10/