Coherent states for the Legendre oscillator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 39-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The two families of coherent states (coherent states, as eigenvectors of the annihilation operator and the Klauder–Gazeau temporally stable coherent states) are defined for the Legendre oscillator, also defined in this note.
@article{ZNSL_2002_285_a3,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Coherent states for the {Legendre} oscillator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a3/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Coherent states for the Legendre oscillator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 39
EP  - 52
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a3/
LA  - ru
ID  - ZNSL_2002_285_a3
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Coherent states for the Legendre oscillator
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 39-52
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a3/
%G ru
%F ZNSL_2002_285_a3
V. V. Borzov; E. V. Damaskinsky. Coherent states for the Legendre oscillator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 39-52. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a3/