On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove an asymptotic formula for a Cauchy problem for the wave equation for a point $(x,t)$ moving to infinity in a characteristic direction. Initial data are generalized functions with a compact support.
			
            
            
            
          
        
      @article{ZNSL_2002_285_a2,
     author = {A. S. Blagoveshchenskii and A. A. Novitskaya},
     title = {On behavior of the solution of a generalized {Cauchy} problem for the wave equation at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/}
}
                      
                      
                    TY - JOUR AU - A. S. Blagoveshchenskii AU - A. A. Novitskaya TI - On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 33 EP - 38 VL - 285 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/ LA - ru ID - ZNSL_2002_285_a2 ER -
%0 Journal Article %A A. S. Blagoveshchenskii %A A. A. Novitskaya %T On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity %J Zapiski Nauchnykh Seminarov POMI %D 2002 %P 33-38 %V 285 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/ %G ru %F ZNSL_2002_285_a2
A. S. Blagoveshchenskii; A. A. Novitskaya. On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/