On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an asymptotic formula for a Cauchy problem for the wave equation for a point $(x,t)$ moving to infinity in a characteristic direction. Initial data are generalized functions with a compact support.
@article{ZNSL_2002_285_a2,
     author = {A. S. Blagoveshchenskii and A. A. Novitskaya},
     title = {On behavior of the solution of a generalized {Cauchy} problem for the wave equation at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/}
}
TY  - JOUR
AU  - A. S. Blagoveshchenskii
AU  - A. A. Novitskaya
TI  - On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 33
EP  - 38
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/
LA  - ru
ID  - ZNSL_2002_285_a2
ER  - 
%0 Journal Article
%A A. S. Blagoveshchenskii
%A A. A. Novitskaya
%T On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 33-38
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/
%G ru
%F ZNSL_2002_285_a2
A. S. Blagoveshchenskii; A. A. Novitskaya. On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/