On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove an asymptotic formula for a Cauchy problem for the wave equation for a point $(x,t)$ moving to infinity in a characteristic direction. Initial data are generalized functions with a compact support.
@article{ZNSL_2002_285_a2,
author = {A. S. Blagoveshchenskii and A. A. Novitskaya},
title = {On behavior of the solution of a generalized {Cauchy} problem for the wave equation at infinity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--38},
year = {2002},
volume = {285},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/}
}
TY - JOUR AU - A. S. Blagoveshchenskii AU - A. A. Novitskaya TI - On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 33 EP - 38 VL - 285 UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/ LA - ru ID - ZNSL_2002_285_a2 ER -
%0 Journal Article %A A. S. Blagoveshchenskii %A A. A. Novitskaya %T On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity %J Zapiski Nauchnykh Seminarov POMI %D 2002 %P 33-38 %V 285 %U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/ %G ru %F ZNSL_2002_285_a2
A. S. Blagoveshchenskii; A. A. Novitskaya. On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 33-38. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a2/