Isohuygens deformation of the ultrahyperbolic operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 207-223

Voir la notice de l'article provenant de la source Math-Net.Ru

New examples of the isohuygens deformation of the ultrahyperbolic operator and its powers with Calogero–Mozer and Lagnese–Stellmacher potentials.
@article{ZNSL_2002_285_a14,
     author = {S. P. Khekalo},
     title = {Isohuygens deformation of the ultrahyperbolic operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a14/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Isohuygens deformation of the ultrahyperbolic operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 207
EP  - 223
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a14/
LA  - ru
ID  - ZNSL_2002_285_a14
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Isohuygens deformation of the ultrahyperbolic operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 207-223
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a14/
%G ru
%F ZNSL_2002_285_a14
S. P. Khekalo. Isohuygens deformation of the ultrahyperbolic operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 207-223. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a14/