The Riemann problem for the weakly perturbed $2\times2$ hyperbolic systems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 194-206

Voir la notice de l'article provenant de la source Math-Net.Ru

The discontinuous initial value problem for a hyperbolic system of two quasilinear equations with small perturbation is considered. The asymptotics on a small parameter of an discontinuous solution is investigated. The full asymptotic expansions are constructed, when the solution of a nonperturbed problem contains two shock waves.
@article{ZNSL_2002_285_a13,
     author = {I. O. Rasskazov},
     title = {The {Riemann} problem for the weakly perturbed $2\times2$ hyperbolic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--206},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a13/}
}
TY  - JOUR
AU  - I. O. Rasskazov
TI  - The Riemann problem for the weakly perturbed $2\times2$ hyperbolic systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 194
EP  - 206
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a13/
LA  - ru
ID  - ZNSL_2002_285_a13
ER  - 
%0 Journal Article
%A I. O. Rasskazov
%T The Riemann problem for the weakly perturbed $2\times2$ hyperbolic systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 194-206
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a13/
%G ru
%F ZNSL_2002_285_a13
I. O. Rasskazov. The Riemann problem for the weakly perturbed $2\times2$ hyperbolic systems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 194-206. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a13/