The diffraction of a plane wave by a grating consisting of thin chiral slabs
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 135-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The diffraction of a normally incident plane wave by a grating consisting of thin semi infinite chiral slabs is considered. The chiral slabs are simulated by the appropriate transition boundary conditions. The problem is simplified by decoupling $E_z$ and $H_z$ components via a similarity transformation. Then the problem is reduced to the scalar Riemann–Hilbert problems and solved in an explicit form. The expansion of the diffracted field in terms of the plane waves is obtained and the numerical results are discussed.
@article{ZNSL_2002_285_a10,
     author = {M. A. Lyalinov and S. V. Polyanskaya},
     title = {The diffraction of a plane wave by a grating consisting of thin chiral slabs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {285},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a10/}
}
TY  - JOUR
AU  - M. A. Lyalinov
AU  - S. V. Polyanskaya
TI  - The diffraction of a plane wave by a grating consisting of thin chiral slabs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 135
EP  - 149
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a10/
LA  - ru
ID  - ZNSL_2002_285_a10
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%A S. V. Polyanskaya
%T The diffraction of a plane wave by a grating consisting of thin chiral slabs
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 135-149
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a10/
%G ru
%F ZNSL_2002_285_a10
M. A. Lyalinov; S. V. Polyanskaya. The diffraction of a plane wave by a grating consisting of thin chiral slabs. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 135-149. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a10/