Computing the invariant polynomials of a polynomial matrix.~2
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 128-142

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of computing the invariant polynomials of a general (regular or singular) one-parameter polynomial matrix. Two new direct methods for computing invariant polynomials, based on the $\Delta W$ and $\nabla V$ rank-factorization methods, are suggested. Each of the methods may be regarded as a method for successively exhausting zeros of invariant polynomials from the matrix spectrum. Application of the methods to computing adjoint matrices for regular polynomial matrices, to finding the canonical decomposition into a product of regular matrices such that the characteristic polynomial of each of them coincides whith the corresponding invariant polynomial, and to computing matrix eigenvectors corresponding to the zeros of its invariant polynomials are considered.
@article{ZNSL_2002_284_a7,
     author = {V. N. Kublanovskaya},
     title = {Computing the invariant polynomials of a polynomial matrix.~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--142},
     publisher = {mathdoc},
     volume = {284},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a7/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - Computing the invariant polynomials of a polynomial matrix.~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 128
EP  - 142
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a7/
LA  - ru
ID  - ZNSL_2002_284_a7
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T Computing the invariant polynomials of a polynomial matrix.~2
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 128-142
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a7/
%G ru
%F ZNSL_2002_284_a7
V. N. Kublanovskaya. Computing the invariant polynomials of a polynomial matrix.~2. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 128-142. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a7/