Computing the invariant polynomials of a polinomial matrix.~1
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 123-127
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithm for computing the invariant polynomials and the canonical triangular (trapezoidal) matrix for a polynomial matrix of full column rank is suggested. The algorithm is based on the rank-factorization $(\Delta W-1)$ method for solving algebraic problems for polynomial matrices, previously suggested by the author.
@article{ZNSL_2002_284_a6,
author = {V. N. Kublanovskaya},
title = {Computing the invariant polynomials of a polinomial matrix.~1},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--127},
publisher = {mathdoc},
volume = {284},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/}
}
V. N. Kublanovskaya. Computing the invariant polynomials of a polinomial matrix.~1. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 123-127. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/