Computing the invariant polynomials of a polinomial matrix.~1
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 123-127

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for computing the invariant polynomials and the canonical triangular (trapezoidal) matrix for a polynomial matrix of full column rank is suggested. The algorithm is based on the rank-factorization $(\Delta W-1)$ method for solving algebraic problems for polynomial matrices, previously suggested by the author.
@article{ZNSL_2002_284_a6,
     author = {V. N. Kublanovskaya},
     title = {Computing the invariant polynomials of a polinomial matrix.~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--127},
     publisher = {mathdoc},
     volume = {284},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - Computing the invariant polynomials of a polinomial matrix.~1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 123
EP  - 127
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/
LA  - ru
ID  - ZNSL_2002_284_a6
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T Computing the invariant polynomials of a polinomial matrix.~1
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 123-127
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/
%G ru
%F ZNSL_2002_284_a6
V. N. Kublanovskaya. Computing the invariant polynomials of a polinomial matrix.~1. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 123-127. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a6/