On Brualdi's theorem
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 48-63
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper studies irreducible matrices $A=(a_{ij})\in\mathbb C^{n\times n}$, $n\ge2$, satisfying Brualdi's conditions $$ \prod_{i\in\overline\gamma}|a_{ii}|\ge\prod_{i\in\overline\gamma}R_i(A), \quad \gamma\in\mathfrak C(A), $$ or, shortly, Brualdi matrices. Here, $R_i(A)=\sum\limits_{i\ne j}|a_{ij}|$, $i=1,\dots,n$; $\mathfrak C(A)$, is the set of circuits of length $k\ge2$ in the directed graph of $A$, and $\overline\gamma$ is the support of $\gamma$. Among the results obtained are a characterization of Brualdi's matrices, implying, in particular, that they are generalized diagonally domiant; necessary and sufficient conditions of singularity for Brualdi matrices; explicit expressions for the absolute values of the components of right null-vectors of a singular Brualdi matrix, and conditions necessary and sufficient for a boundary point of Brualdi's inclusion region to be an eigenvalue of an irreducible matrix.
@article{ZNSL_2002_284_a3,
author = {L. Yu. Kolotilina},
title = {On {Brualdi's} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--63},
year = {2002},
volume = {284},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/}
}
L. Yu. Kolotilina. On Brualdi's theorem. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/