On Brualdi's theorem
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 48-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper studies irreducible matrices $A=(a_{ij})\in\mathbb C^{n\times n}$, $n\ge2$, satisfying Brualdi's conditions $$ \prod_{i\in\overline\gamma}|a_{ii}|\ge\prod_{i\in\overline\gamma}R_i(A), \quad \gamma\in\mathfrak C(A), $$ or, shortly, Brualdi matrices. Here, $R_i(A)=\sum\limits_{i\ne j}|a_{ij}|$, $i=1,\dots,n$; $\mathfrak C(A)$, is the set of circuits of length $k\ge2$ in the directed graph of $A$, and $\overline\gamma$ is the support of $\gamma$. Among the results obtained are a characterization of Brualdi's matrices, implying, in particular, that they are generalized diagonally domiant; necessary and sufficient conditions of singularity for Brualdi matrices; explicit expressions for the absolute values of the components of right null-vectors of a singular Brualdi matrix, and conditions necessary and sufficient for a boundary point of Brualdi's inclusion region to be an eigenvalue of an irreducible matrix.
@article{ZNSL_2002_284_a3,
     author = {L. Yu. Kolotilina},
     title = {On {Brualdi's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--63},
     year = {2002},
     volume = {284},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On Brualdi's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 48
EP  - 63
VL  - 284
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/
LA  - ru
ID  - ZNSL_2002_284_a3
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On Brualdi's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 48-63
%V 284
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/
%G ru
%F ZNSL_2002_284_a3
L. Yu. Kolotilina. On Brualdi's theorem. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a3/