Determinantal inequalities for accretive-dissipative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 36-47

Voir la notice de l'article provenant de la source Math-Net.Ru

A matrix $A\in M_n(\mathbf C)$ is said to be accretive-dissipative if in its Hermitian decomposition $$ A=B+iC, \quad B=B^*, \quad C=C^*, $$ both matrices $B$ and $C$ are positive definite. Further, if $B=I_n$, then $A$ is called a Buckley matrix. The following extension of the classical Fischer inequality for Hermtian positive-definite matrices is proved. Let \begin{math} A=\begin{pmatrix} A_{11}{12} A_{21}{22} \end{pmatrix} \end{math} be an accritive-dissipative matrix, $k$ and $l$ be the orders of $A_{11}$ and $A_{22}$, respectively, and let $m=\min\{k,l\}$. Then $$ |{\det A}|\le3^m|{\det A_{11}}|\,|{\det A_{22}}|. $$ For Buckley matrices, the stronger bound $$ |{\det}|\le\biggl(\frac{1+\sqrt{17}}4\biggr)^m|{\det A_{11}}|\,|{\det A_{22}}|. $$ is obtained.
@article{ZNSL_2002_284_a2,
     author = {Kh. D. Ikramov},
     title = {Determinantal inequalities for accretive-dissipative matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--47},
     publisher = {mathdoc},
     volume = {284},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Determinantal inequalities for accretive-dissipative matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 36
EP  - 47
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a2/
LA  - ru
ID  - ZNSL_2002_284_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Determinantal inequalities for accretive-dissipative matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 36-47
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a2/
%G ru
%F ZNSL_2002_284_a2
Kh. D. Ikramov. Determinantal inequalities for accretive-dissipative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 36-47. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a2/