Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 263-268

Voir la notice de l'article provenant de la source Math-Net.Ru

It is demonstrated that, under some conditions, a system of $n$ nonlinear equations with $n$ unknowns has at least $2^n$ solutions.
@article{ZNSL_2002_284_a13,
     author = {M. N. Yakovlev},
     title = {Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {263--268},
     publisher = {mathdoc},
     volume = {284},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 263
EP  - 268
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/
LA  - ru
ID  - ZNSL_2002_284_a13
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 263-268
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/
%G ru
%F ZNSL_2002_284_a13
M. N. Yakovlev. Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 263-268. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/