Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 263-268
Voir la notice de l'article provenant de la source Math-Net.Ru
It is demonstrated that, under some conditions, a system of $n$ nonlinear equations with $n$ unknowns has at least $2^n$ solutions.
@article{ZNSL_2002_284_a13,
author = {M. N. Yakovlev},
title = {Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {263--268},
publisher = {mathdoc},
volume = {284},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/}
}
M. N. Yakovlev. Existence of~$2^n$ solutions of a system of~$n$ nonlinear equations in~$n$ unknowns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 263-268. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a13/