Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 247-262
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions sufficient for a system of $n$ first-order differential equations with deviating argument to be solvable and to have at least $2^n$ periodic solutions are obtained.
@article{ZNSL_2002_284_a12,
author = {M. N. Yakovlev},
title = {Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {247--262},
publisher = {mathdoc},
volume = {284},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/}
}
TY - JOUR AU - M. N. Yakovlev TI - Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 247 EP - 262 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/ LA - ru ID - ZNSL_2002_284_a12 ER -
M. N. Yakovlev. Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 247-262. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/