Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 247-262

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions sufficient for a system of $n$ first-order differential equations with deviating argument to be solvable and to have at least $2^n$ periodic solutions are obtained.
@article{ZNSL_2002_284_a12,
     author = {M. N. Yakovlev},
     title = {Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--262},
     publisher = {mathdoc},
     volume = {284},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 247
EP  - 262
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/
LA  - ru
ID  - ZNSL_2002_284_a12
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 247-262
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/
%G ru
%F ZNSL_2002_284_a12
M. N. Yakovlev. Existence of~$2^n$ periodic solutions of a system of~$n$ differential equations of first order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 247-262. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a12/