On some properties of polynomial bases of subspaces over the field of rational functions in several variables
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 177-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spaces of multiparameter rational vectors, i.e., of vectors whose components are rational functions in several variables, and polynomial bases of their subspaces are considered. The conjecture that any subspace in the space in multiparameter rational vectors possesses a “free” polynomial basis, i.e., a basis for which the associated basis multiparameter polynomial matrix has no finite regular spectrum, is refuted on an example. Some consequences of this fact are indicated. Simpler proofs of some properties of singular spectra of the basis polynomial matrices corresponding to the null-spaces of a singular polynomial matrix are presented.
@article{ZNSL_2002_284_a10,
     author = {V. B. Khazanov},
     title = {On some properties of polynomial bases of subspaces over the field of rational functions in several variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--191},
     year = {2002},
     volume = {284},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a10/}
}
TY  - JOUR
AU  - V. B. Khazanov
TI  - On some properties of polynomial bases of subspaces over the field of rational functions in several variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 177
EP  - 191
VL  - 284
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a10/
LA  - ru
ID  - ZNSL_2002_284_a10
ER  - 
%0 Journal Article
%A V. B. Khazanov
%T On some properties of polynomial bases of subspaces over the field of rational functions in several variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 177-191
%V 284
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a10/
%G ru
%F ZNSL_2002_284_a10
V. B. Khazanov. On some properties of polynomial bases of subspaces over the field of rational functions in several variables. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 177-191. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a10/