Powers of sign portraits of real matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The sign portrait $S$ of a real $n\times n$ matrix is a matrix over the semiring with elements $0,1,-1$ and $\theta$, where $\theta$ symbolizes indeterminateness. It is proved that if $k$ is the least positive integer such that all the entries of $S^k$ are equal to $\theta$ then $k\le2n^2-3n+2$, and this bound is sharp.
@article{ZNSL_2002_284_a0,
     author = {Yu. A. Alpin and S. N. Il'in},
     title = {Powers of sign portraits of real matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     year = {2002},
     volume = {284},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a0/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - S. N. Il'in
TI  - Powers of sign portraits of real matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 5
EP  - 17
VL  - 284
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a0/
LA  - ru
ID  - ZNSL_2002_284_a0
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A S. N. Il'in
%T Powers of sign portraits of real matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 5-17
%V 284
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a0/
%G ru
%F ZNSL_2002_284_a0
Yu. A. Alpin; S. N. Il'in. Powers of sign portraits of real matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XV, Tome 284 (2002), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2002_284_a0/