The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 140-155

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the field $F$ which is a direct limit of increasing chain of finite fields. We describe Bratteli diagram, complex factor-representations and projective moduli of the Heisenberg group of $3\times3$ upper-triangular matrices with elements from $F$.
@article{ZNSL_2001_283_a9,
     author = {K. P. Kokhas'},
     title = {The classification of complex factor-representations of the 3-dimensional {Heisenberg} group over countable field of finite characteristics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--155},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/}
}
TY  - JOUR
AU  - K. P. Kokhas'
TI  - The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 140
EP  - 155
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/
LA  - ru
ID  - ZNSL_2001_283_a9
ER  - 
%0 Journal Article
%A K. P. Kokhas'
%T The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 140-155
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/
%G ru
%F ZNSL_2001_283_a9
K. P. Kokhas'. The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 140-155. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/