The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 140-155
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the field $F$ which is a direct limit of increasing chain of finite fields. We describe Bratteli diagram, complex factor-representations and projective moduli of the Heisenberg group of $3\times3$ upper-triangular matrices with elements from $F$.
@article{ZNSL_2001_283_a9,
author = {K. P. Kokhas'},
title = {The classification of complex factor-representations of the 3-dimensional {Heisenberg} group over countable field of finite characteristics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--155},
year = {2001},
volume = {283},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/}
}
TY - JOUR AU - K. P. Kokhas' TI - The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 140 EP - 155 VL - 283 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/ LA - ru ID - ZNSL_2001_283_a9 ER -
%0 Journal Article %A K. P. Kokhas' %T The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics %J Zapiski Nauchnykh Seminarov POMI %D 2001 %P 140-155 %V 283 %U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/ %G ru %F ZNSL_2001_283_a9
K. P. Kokhas'. The classification of complex factor-representations of the 3-dimensional Heisenberg group over countable field of finite characteristics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 140-155. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a9/