Cauchy identities for universal Schubert polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 123-139
Voir la notice du chapitre de livre
We prove the Cauchy type identities for the universal double Schubert polynomials, introduced recently by W. Fulton. As a corollary, the determinantal formula for some specializations of the universal double Schubert polynomials corresponding to the Grassmannian permutations are obtained. We also introduce and study the universal Schur functions and multiparameter deformation of Schubert polynomials.
@article{ZNSL_2001_283_a8,
author = {A. N. Kirillov},
title = {Cauchy identities for universal {Schubert} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--139},
year = {2001},
volume = {283},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/}
}
A. N. Kirillov. Cauchy identities for universal Schubert polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 123-139. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/