Cauchy identities for universal Schubert polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 123-139

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Cauchy type identities for the universal double Schubert polynomials, introduced recently by W. Fulton. As a corollary, the determinantal formula for some specializations of the universal double Schubert polynomials corresponding to the Grassmannian permutations are obtained. We also introduce and study the universal Schur functions and multiparameter deformation of Schubert polynomials.
@article{ZNSL_2001_283_a8,
     author = {A. N. Kirillov},
     title = {Cauchy identities for universal {Schubert} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/}
}
TY  - JOUR
AU  - A. N. Kirillov
TI  - Cauchy identities for universal Schubert polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 123
EP  - 139
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/
LA  - en
ID  - ZNSL_2001_283_a8
ER  - 
%0 Journal Article
%A A. N. Kirillov
%T Cauchy identities for universal Schubert polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 123-139
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/
%G en
%F ZNSL_2001_283_a8
A. N. Kirillov. Cauchy identities for universal Schubert polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 123-139. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a8/