Gaussuan limit for projective characters of large symmetric groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 73-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the 1993 S. Kerov obtained a central limit theorem for the Plansherel measure on Young diagrams. The Plansherel measure is a natural probability measure on the set of irredcible characters of the symmetric group $S_n$. Kerov's theorem states that, as $n\to\infty$, the values of irreducible characters on the simple cycles, appropriately normalized and considered as random variables, are asymptotically independent and converge to Gaussian random variables. In this work we obtain an analogue of this theorem for projective representations of the symmetric group.
@article{ZNSL_2001_283_a6,
     author = {V. N. Ivanov},
     title = {Gaussuan limit for projective characters of large symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--97},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a6/}
}
TY  - JOUR
AU  - V. N. Ivanov
TI  - Gaussuan limit for projective characters of large symmetric groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 73
EP  - 97
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a6/
LA  - ru
ID  - ZNSL_2001_283_a6
ER  - 
%0 Journal Article
%A V. N. Ivanov
%T Gaussuan limit for projective characters of large symmetric groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 73-97
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a6/
%G ru
%F ZNSL_2001_283_a6
V. N. Ivanov. Gaussuan limit for projective characters of large symmetric groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 73-97. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a6/