The Linnik conjecture.~II
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 37-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The Linnik conjecture is proved in the measquare variant over the integer parameters $(m,n)$ of the Kloosterman sum $S(m,n;c)$. This mean may be called arithmetic, because the arithmetics of Kloosterman sums depends on the parameters $(m,n)$.
@article{ZNSL_2001_283_a3,
     author = {A. I. Vinogradov},
     title = {The {Linnik} {conjecture.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a3/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The Linnik conjecture.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 37
EP  - 49
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a3/
LA  - ru
ID  - ZNSL_2001_283_a3
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The Linnik conjecture.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 37-49
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a3/
%G ru
%F ZNSL_2001_283_a3
A. I. Vinogradov. The Linnik conjecture.~II. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 37-49. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a3/