Remarks on the Markov--Krein identity and quasi-invariance of the gamma process
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 21-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present a simple proof of the Markov–Krein identity for distributions of means of linear functionals of the  Dirichlet process and its various generalizations. The key idea is to use the representation of the Dirichlet process as the normalized gamma process and fundamental properties of gamma processes.
			
            
            
            
          
        
      @article{ZNSL_2001_283_a2,
     author = {A. M. Vershik and M. Yor and N. V. Tsilevich},
     title = {Remarks on the {Markov--Krein} identity and quasi-invariance of the gamma process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a2/}
}
                      
                      
                    TY - JOUR AU - A. M. Vershik AU - M. Yor AU - N. V. Tsilevich TI - Remarks on the Markov--Krein identity and quasi-invariance of the gamma process JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 21 EP - 36 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a2/ LA - ru ID - ZNSL_2001_283_a2 ER -
A. M. Vershik; M. Yor; N. V. Tsilevich. Remarks on the Markov--Krein identity and quasi-invariance of the gamma process. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 21-36. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a2/