The Hausdorff dimension of the harmonic measure on de Rham's curve
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 206-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper [3] J. de Rham studied the curve, which can be constructed by “trisecting” the square. Another way to define the curve is to consider the iterated function system, based on two affine transformations. The aim of the present paper is to evaluate the hausdorff dimension of the harmonic measure on the curve.
@article{ZNSL_2001_283_a13,
     author = {P. P. Nikitin},
     title = {The {Hausdorff} dimension of the harmonic measure on {de~Rham's} curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {206--223},
     year = {2001},
     volume = {283},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a13/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - The Hausdorff dimension of the harmonic measure on de Rham's curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 206
EP  - 223
VL  - 283
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a13/
LA  - ru
ID  - ZNSL_2001_283_a13
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T The Hausdorff dimension of the harmonic measure on de Rham's curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 206-223
%V 283
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a13/
%G ru
%F ZNSL_2001_283_a13
P. P. Nikitin. The Hausdorff dimension of the harmonic measure on de Rham's curve. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 206-223. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a13/