Nonselfadjoint extensions of symmetric operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 92-105

Voir la notice de l'article provenant de la source Math-Net.Ru

A previous result of the author about almost unitary operators is applied to the spectral analysis of nonselfadjoint extensions of symmetric operators. With this aim in view, the Cayley transform of such an extension is written as a perturbation of a unitary operator by a finite rank operator of a special form in terms of the Weyl function.
@article{ZNSL_2001_282_a7,
     author = {V. V. Kapustin},
     title = {Nonselfadjoint extensions of symmetric operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a7/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Nonselfadjoint extensions of symmetric operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 92
EP  - 105
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a7/
LA  - ru
ID  - ZNSL_2001_282_a7
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Nonselfadjoint extensions of symmetric operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 92-105
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a7/
%G ru
%F ZNSL_2001_282_a7
V. V. Kapustin. Nonselfadjoint extensions of symmetric operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 92-105. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a7/