A lemniscate as the spectrum of a~perturbed shift
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 74-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of the perturbed shift operator $T$, $T\colon f(n)\mapsto f(n+1)+a(n)f(n)$, in $\ell^2(\mathbf Z)$ is considered for $a(n)$ taking a finite set of values. It is proved that if all values of the function $a(n)$ have uniform frequencies on $\mathbf Z$, then the essential part of the spectrum fills a generalized lemniscate.
@article{ZNSL_2001_282_a6,
     author = {A. P. Kalupin and V. L. Oleinik},
     title = {A lemniscate as the spectrum of a~perturbed shift},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--91},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a6/}
}
TY  - JOUR
AU  - A. P. Kalupin
AU  - V. L. Oleinik
TI  - A lemniscate as the spectrum of a~perturbed shift
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 74
EP  - 91
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a6/
LA  - ru
ID  - ZNSL_2001_282_a6
ER  - 
%0 Journal Article
%A A. P. Kalupin
%A V. L. Oleinik
%T A lemniscate as the spectrum of a~perturbed shift
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 74-91
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a6/
%G ru
%F ZNSL_2001_282_a6
A. P. Kalupin; V. L. Oleinik. A lemniscate as the spectrum of a~perturbed shift. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 74-91. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a6/