Bergman kernels for almost spherical domians with $H^{\sigma}$-smoth boundaries
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 66-73
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the behavior of the Bergman kernels for almost spherical striclty pseudoconvex domians in $\mathbb C^n$. We find first several terms of the asymptotics for the Bergman kernel of striclty pseudoconvex domian with $H^{\sigma}$-smooth boundary, $4\sigma6$. New terms in comparison with the case of $C^6$-smoth boundary appear but the growth rate of the remainder remains the same.
@article{ZNSL_2001_282_a5,
author = {E. G. Zel'dina},
title = {Bergman kernels for almost spherical domians with $H^{\sigma}$-smoth boundaries},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {66--73},
publisher = {mathdoc},
volume = {282},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a5/}
}
E. G. Zel'dina. Bergman kernels for almost spherical domians with $H^{\sigma}$-smoth boundaries. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 66-73. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a5/