Quasisimilar weak contractions have isomorphic lattices of invariant subspaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 51-65

Voir la notice de l'article provenant de la source Math-Net.Ru

A contruction $T$ acting on a Hilbert space $H$ is called a weak contraction if the spectrum of $T$ does not cover the unit disk $\mathbb D$ and the operator $I-T^*T$ is of trace class. The operators $T_1\colon H_1\to H_1$ and $T_2\colon H_2\to H_2$ are called quasisimilar if there exist operators $X\colon H_1\to H_2$ and $Y\colon H_2\to H_1$ such that $T_2X=XT_1$, $YT_2=T_1Y$, and $X$ and $Y$ have zero kernels and dense ranges. It is proved that if two weak contructions $T_1$ and $T_2$ acting on separable spaces $H_1$ and $H_2$ are quasisimilar, then there exists an operator $X\colon H_1\to H_2$ such that $XT_1=T_2$ and the mapping $\mathscr I_X\colon\operatorname{Lat}T_1\to\operatorname{Lat}T_2$, $\mathscr I_XE=\operatorname{clos}XE$, $E\in\operatorname{Lat}T_1$, is a lattice isomorphism. An example is given of two quasisimilar weak contractions such that for any isomorphism $\mathscr I_X$ its inverse is not equal to $\mathscr I_Y$ for an arbitrary (bounded) operator $Y$.
@article{ZNSL_2001_282_a4,
     author = {M. F. Gamal'},
     title = {Quasisimilar weak contractions have isomorphic lattices of invariant subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a4/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - Quasisimilar weak contractions have isomorphic lattices of invariant subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 51
EP  - 65
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a4/
LA  - ru
ID  - ZNSL_2001_282_a4
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T Quasisimilar weak contractions have isomorphic lattices of invariant subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 51-65
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a4/
%G ru
%F ZNSL_2001_282_a4
M. F. Gamal'. Quasisimilar weak contractions have isomorphic lattices of invariant subspaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 51-65. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a4/