On the upper bounds of Lebesgue constants for Forier--Jacobi series summation methods
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 34-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In what follows. the $P^{(\alpha,\beta)}_k$ are Jacobi polinomians, $C[a,b]$ is the space of continuous functions on $[a,b]$ with uniform norm, $\mathscr U^{\Lambda}_n\colon C[-1,1]\to C[-1,1]$ is a sequence of operators determined by a matrixof multipliers $\Lambda=\{\lambda^{(n)}_k\}$: \begin{gather*} f\sim\sum^{\infty}_{k=0}a_kP^{(\alpha,\beta)}_k, \qquad \mathscr U^{\Lambda}_nf\sim\sum^{\infty}_{k=0}\lambda^{(n)}_ka_kP^{(\alpha,\beta)}, \\ \mathfrak L^{(\alpha,\beta)}_n(\Lambda)=\sup_{y\in[-1,1]}\sup_{\|f\|\le1}\left|\mathscr U^{\Lambda}_nf(y)\right|. \end{gather*} The values of $\sup\limits\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ and $\lim\limits_{n\to\infty}\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ are studied. It is proved that in the cases of \begin{gather*} 1)\alpha=\beta=-1/2, \quad \lambda^{(n)}_k=\varphi(k/n); \\ 2)\alpha=\beta=1/2, \quad \lambda^{(n)}_k=\varphi((k+1)/n); \\ 3)\alpha=\beta=\pm1/2, \quad \lambda^{(n)}_k=\varphi((k+1/2)/n) \end{gather*} these values are equal to $$ 1) \quad \frac2\pi\int\limits^{\infty}_0\left|\int\limits^{\infty}_0\varphi(t)\cos zt\,dt\right|dz; \qquad 2,\ 3)\quad \frac2\pi\int\limits^{\infty}_0z\left|\int\limits^{\infty}_0t\varphi(t)\sin zt\,dt\right|dz. $$ under some conditions on $\varphi$. Then it is shown that for the Legendre polynomials $(\alpha=\beta=0)$ and $\lambda^{(n)}_k=\varphi(k/n)$ the limit and the supremum of the Lebesgue constants may fail to be equal.
@article{ZNSL_2001_282_a3,
     author = {O. L. Vinogradov},
     title = {On the upper bounds of {Lebesgue} constants for {Forier--Jacobi} series summation methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--50},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the upper bounds of Lebesgue constants for Forier--Jacobi series summation methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 34
EP  - 50
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/
LA  - ru
ID  - ZNSL_2001_282_a3
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the upper bounds of Lebesgue constants for Forier--Jacobi series summation methods
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 34-50
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/
%G ru
%F ZNSL_2001_282_a3
O. L. Vinogradov. On the upper bounds of Lebesgue constants for Forier--Jacobi series summation methods. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 34-50. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/