On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 34-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In what follows. the $P^{(\alpha,\beta)}_k$ are Jacobi polinomians, $C[a,b]$ is the space of continuous functions on $[a,b]$ with uniform norm, $\mathscr U^{\Lambda}_n\colon C[-1,1]\to C[-1,1]$ is a sequence of operators determined by a matrixof multipliers $\Lambda=\{\lambda^{(n)}_k\}$: \begin{gather*} f\sim\sum^{\infty}_{k=0}a_kP^{(\alpha,\beta)}_k, \qquad \mathscr U^{\Lambda}_nf\sim\sum^{\infty}_{k=0}\lambda^{(n)}_ka_kP^{(\alpha,\beta)}, \\ \mathfrak L^{(\alpha,\beta)}_n(\Lambda)=\sup_{y\in[-1,1]}\sup_{\|f\|\le1}\left|\mathscr U^{\Lambda}_nf(y)\right|. \end{gather*} The values of $\sup\limits\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ and $\lim\limits_{n\to\infty}\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ are studied. It is proved that in the cases of \begin{gather*} 1)\alpha=\beta=-1/2, \quad \lambda^{(n)}_k=\varphi(k/n); \\ 2)\alpha=\beta=1/2, \quad \lambda^{(n)}_k=\varphi((k+1)/n); \\ 3)\alpha=\beta=\pm1/2, \quad \lambda^{(n)}_k=\varphi((k+1/2)/n) \end{gather*} these values are equal to $$ 1) \quad \frac2\pi\int\limits^{\infty}_0\left|\int\limits^{\infty}_0\varphi(t)\cos zt\,dt\right|dz; \qquad 2,\ 3)\quad \frac2\pi\int\limits^{\infty}_0z\left|\int\limits^{\infty}_0t\varphi(t)\sin zt\,dt\right|dz. $$ under some conditions on $\varphi$. Then it is shown that for the Legendre polynomials $(\alpha=\beta=0)$ and $\lambda^{(n)}_k=\varphi(k/n)$ the limit and the supremum of the Lebesgue constants may fail to be equal.
@article{ZNSL_2001_282_a3,
     author = {O. L. Vinogradov},
     title = {On the upper bounds of {Lebesgue} constants for {Forier{\textendash}Jacobi} series summation methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--50},
     year = {2001},
     volume = {282},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 34
EP  - 50
VL  - 282
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/
LA  - ru
ID  - ZNSL_2001_282_a3
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 34-50
%V 282
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/
%G ru
%F ZNSL_2001_282_a3
O. L. Vinogradov. On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 34-50. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a3/