On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the Bergman space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 26-33

Voir la notice de l'article provenant de la source Math-Net.Ru

If all $n$ $(n>1)$ zeros of a rational function $r$ with simple poles are in a half-plane, then the derivative of $r$ has at least one zero in the same half-plane. This result is used to prove that the number of zeros of a linear combination of $n$ Bergman kernels in the unit disc may range from 0 to $2n-3$.
@article{ZNSL_2001_282_a2,
     author = {I. V. Videnskii},
     title = {On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the {Bergman} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a2/}
}
TY  - JOUR
AU  - I. V. Videnskii
TI  - On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the Bergman space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 26
EP  - 33
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a2/
LA  - ru
ID  - ZNSL_2001_282_a2
ER  - 
%0 Journal Article
%A I. V. Videnskii
%T On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the Bergman space
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 26-33
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a2/
%G ru
%F ZNSL_2001_282_a2
I. V. Videnskii. On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the Bergman space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 26-33. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a2/