Theory of linear descrete time-invariant dissipative scattering systems with state $\pi_\kappa$-spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 192-215
Voir la notice de l'article provenant de la source Math-Net.Ru
An arbtrary operator-valued function in the generalized Shur class in realized as the transfer function of a minimal optimal and minimal $\ast$- optimal dissipative scattering system with Pontryagin state space. The results generalize D. Z. Arov's results for the Hilbert state space case.
@article{ZNSL_2001_282_a12,
author = {S. M. Saprikin},
title = {Theory of linear descrete time-invariant dissipative scattering systems with state $\pi_\kappa$-spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {192--215},
publisher = {mathdoc},
volume = {282},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a12/}
}
TY - JOUR AU - S. M. Saprikin TI - Theory of linear descrete time-invariant dissipative scattering systems with state $\pi_\kappa$-spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 192 EP - 215 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a12/ LA - ru ID - ZNSL_2001_282_a12 ER -
S. M. Saprikin. Theory of linear descrete time-invariant dissipative scattering systems with state $\pi_\kappa$-spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 192-215. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a12/