Harmonic series summation lemma and Vasyunin's formulas
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 20-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Introducting a rather simple map of the Nyman–Beurling approach, we arrive at Vasyunin style contagent formulas for the relevant inner products. This is accomplished by means of a summation formula for cetain series derived from arithmetical progression subseries of the harmonic series. The main attractiveness of the resulting contagent sums for the inner products is the fact that the coefficients of the contagents are only $\pm1$, which gives perhaps some hope to lighten up the calculation of the Gramians.
@article{ZNSL_2001_282_a1,
     author = {L. B\'aes-Duarte},
     title = {Harmonic series summation lemma and {Vasyunin's} formulas},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--25},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a1/}
}
TY  - JOUR
AU  - L. Báes-Duarte
TI  - Harmonic series summation lemma and Vasyunin's formulas
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 20
EP  - 25
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a1/
LA  - en
ID  - ZNSL_2001_282_a1
ER  - 
%0 Journal Article
%A L. Báes-Duarte
%T Harmonic series summation lemma and Vasyunin's formulas
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 20-25
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a1/
%G en
%F ZNSL_2001_282_a1
L. Báes-Duarte. Harmonic series summation lemma and Vasyunin's formulas. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 20-25. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a1/