Toeplitz–Schur multipliers of $S_p(L^2(G))$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19
Cet article a éte moissonné depuis la source Math-Net.Ru
We study Toeplitz–Schur multipliers of Schatten–von Neumann class $S_p$ for $0
. We describe all functions $F$ on an arbitrary commutative locally compact group $G$ satisfying the following condition: for any integral operator in $S_p$ with kernel function $k(x,y)$, the kernel function $F(x-y)k(x)k(y)$ determines also an integral operator in $S_p$.
@article{ZNSL_2001_282_a0,
author = {A. B. Aleksandrov},
title = {Toeplitz{\textendash}Schur multipliers of $S_p(L^2(G))$ for $p<1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {2001},
volume = {282},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/}
}
A. B. Aleksandrov. Toeplitz–Schur multipliers of $S_p(L^2(G))$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/