Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p1$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study Toeplitz–Schur multipliers of Schatten–von Neumann class $S_p$ for $0$. We describe all functions $F$ on an arbitrary commutative locally compact group $G$ satisfying the following condition: for any integral operator in $S_p$ with kernel function $k(x,y)$, the kernel function $F(x-y)k(x)k(y)$ determines also an integral operator in $S_p$.
			
            
            
            
          
        
      @article{ZNSL_2001_282_a0,
     author = {A. B. Aleksandrov},
     title = {Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/}
}
                      
                      
                    A. B. Aleksandrov. Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/