Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Toeplitz–Schur multipliers of Schatten–von Neumann class $S_p$ for $0$. We describe all functions $F$ on an arbitrary commutative locally compact group $G$ satisfying the following condition: for any integral operator in $S_p$ with kernel function $k(x,y)$, the kernel function $F(x-y)k(x)k(y)$ determines also an integral operator in $S_p$.
@article{ZNSL_2001_282_a0,
     author = {A. B. Aleksandrov},
     title = {Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {282},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 5
EP  - 19
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/
LA  - ru
ID  - ZNSL_2001_282_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 5-19
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/
%G ru
%F ZNSL_2001_282_a0
A. B. Aleksandrov. Toeplitz--Schur multipliers of $S_p(L^2(G))$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 29, Tome 282 (2001), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2001_282_a0/