Continuous functors and duality
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 186-209

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be an associative ring with unity and let ${}_\Lambda\mathfrak M$ be a category of left unitary $\Lambda$-modules. The complete characterization of continuous additive co- and contravariant functors ${}_\Lambda\mathfrak M\to_\mathbb Z\mathfrak M$ is given. Such functors are either representable, or equivalent to a tenzor product, or the trivial functor. The class of categories, which are dual to ${}_\Lambda\mathfrak M$ and thefore equivalent to the category of compact right $\Lambda$-modules, is constructed by purely algebraic means. The canonical category is extracted from this class. The purely algebraic structure is constructed that is equivalent to the topology-algebraic structure of compact right $\Lambda$-module. Algebraic equivalents of connectivity and of complete inconnectivity are given.
@article{ZNSL_2001_281_a8,
     author = {M. B. Zvyagina},
     title = {Continuous functors and duality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--209},
     publisher = {mathdoc},
     volume = {281},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a8/}
}
TY  - JOUR
AU  - M. B. Zvyagina
TI  - Continuous functors and duality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 186
EP  - 209
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a8/
LA  - ru
ID  - ZNSL_2001_281_a8
ER  - 
%0 Journal Article
%A M. B. Zvyagina
%T Continuous functors and duality
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 186-209
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a8/
%G ru
%F ZNSL_2001_281_a8
M. B. Zvyagina. Continuous functors and duality. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 186-209. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a8/